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Abstract: The generation of optically active glycerol derivatives via 
enzymatic ester hydrolysis of prochiral 1,3-diacyl derivatives of 2-0- 
ally1 protected glycerol has been investigated. Lipase M-AP, under 
optimum conditions, afforded asymmetric inductions of 94-96 % ee. The 
obtained (R)-monoacyl derivative was converted to (S)-configurated 
tosylglycerol compounds. 

Optically active glycerol synthons play an important role in the syntheses of natural 
and unnatural glycerides as well as glyco-, phospho- and etherlipids. Moreover, they 
are key intermediates in the synthesis of @-blockers and natural compounds1 . The 
asymmetric enzymatic monoesterification of 2-0-benzylglycerol2 and the 
stereoselective monohydrolysis of the corresponding 1,3-diacylatess has been 
demonstrated by several authors. Additionally, several kinetic resolutions of racemic 
glycerol derivatives using enzymes have been describedd. In the present work we 
wish to report on the asymmetric ,hydrolysis of diacylated 2-0-allylglycerol 1 to 
generate the corresponding (R)-monoester 2 (Scheme 1). Employing an ally1 instead 
of a benzyl protecting group may have any of the following potential advantages: i) it 
allows deprotection under non-hydrogenating conditions useful e.g. for olefinic 
‘derivatives of 2, ii) the ally1 group can be selectively removed in the presence of a 
benzyl ether protecting group 5 hence increasing synthetic flexibility, iii) 2 can be 
converted to an acetal of type 6. 

2-0-allylglycerol 1 was readily synthesized6 on the mol-scale from glycerol via the 
1,3-0-benzylidene intermediate and subsequently acylated to the substrates &t-e by 
standard methods. Various commercial lipases and esterases were tested for asym- 
metric hydrolysis of the diacetate and dibutyrate 7. Generally, the dibutyrate & was 
hydrolyzed much more rapidly than the diacetate h. The highest ee value for the 
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Scheme 1: Chemoenzymatic approach to chiral 2-0-allylglycerol derivatives. 

“bower pH7 4 
lipase 

0 1 a-& 0 
e: pentyl 

I) TsCUPy 
ii) MeOH/KOH 

/ 

TeOJ/O” E TeOJg E!z.e 
s pTsd 5. X-pentanoyl m’ 

4, X=H 

Table 1: Hydrolysis of 1p by lipase M-AP 10 under various conditions. 
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butyrate (R)-& under standard conditions7 was 78 96 ee obtained with Lipase D-20 
(Amano); Lipase M-AP (Amano) afforded (R)-& in 57 8 ee. Surprisingly, the stereo- 
selectivity of Lipase M-AP towards Ir was strongly dependent on the substrate 
concentration, attaining 88 96 ee when a concentration of 2 % w/v was employed and 
decreasing to 70 % ee at 3.7 % concentration. Studying the influence of the acyl group 
(h-d on the stereoselectivity of Lipase M-AP revealed the divalerate LQ to be the 
most suitable substrate under standard conditions (92 96 ee). Aiming at a procedure 
of higher preparative value physical and chemical parameters were optimized using 
LQ as substrate (Table 1): Hydrolysis beyond 50 % conversion slightly increased, 
while higher substrate concentration slightly decreased the ee value of 26 (entry 2 
and 3). As observed previously 8, lower temperatures enhanced the stereoselectivity 
of enzymatic hydrolysis (entry 4). Salting-in salts (entry 5 and 6), salting-out salts 
(entry 7 and 8) and calcium ions (entry 9) enhanced stereoselectivity and, partially, 
specific activity of the enzyme. At higher substrate concentration (3.7 %, entry 10) an 
ee value of 95 % was achieved by combination of several favourable parameters. This 
value decreased by 

(60 g19. 

-1 ?6 when the experiment was carried out on a larger scale 

24 of 94 % ee was converted to 4 by means of tosylation and methanolysis without 
loss of enantiomeric purityto.*l (75 % yield with respect to ld). Removing the ally1 
protecting group by treating & with Pd/C in the presence of p-TsOH in MeOH/H205 
afforded (S)-Z in 85 96 yield and retained enantiomeric purity’*. At this stage the 
absolute configuration could be assigned by comparing the specific rotation of 5. to 
reference values from literaturel3. Recrystallization of 5 from Et20 raised the 
enantiomeric excess to 96 %. Treatment of 4 with Pd/C in nonprotic solvents (THF or 
toluene) under neutral conditions produced the dioxolane 4 via double bond 
isomerization and cyclization (50-79 % yieldt4). According to NMR an epimeric ratio 
at C(2) of 1:l to 1O:l was obtained depending on the reaction conditions. 

We have also briefly investigated the enzymatic hydrolysis of a 2-0-benzyl protected 
diglyceride using an optimized low-temperature system: 1,3-di-0-acetyl-2-0- 
benzylglycerol was asymmetrically hydrolyzed using lipase P (Amano) providing 
[(R)-2-(benzyloxy)-3-hydroxypropyl] acetate (n3 in a maximum of 95 % ee at 50 % 
conversion. At a higher substrate concentration (3.7 96 w/v) and on a larger scale 
(25 g) 2. was obtained in 93 % ee and 87 96 yieldIs. With respect to enantiomeric 
purity and chemical yield this compares favourably to the results obtained by other 
investigators3 in the 2-0-benzyl protected series. 
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the mixture was refluxed for another 2 h, then allowed to cool and filtered. 
The filtrate was evaporated and the residue chromatographed on silica gel 60 
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5.0 g lipase P-30 and the pH kept constant by addition of 1.0 N NaOH. After 
53.9 8 conversion (3.5 h) the reaction mixture was extracted with 2x500 ml 
CH2C12, and the combined organic phases were dried (MgSO4) and evaporated to 
give 18.4 g (87 %) Z as a colourless oil: 96 % (GLC); 93 % ee (derivatization with 
(S)-Trolox methyl ether16 and separation of the diastereoisomers on an OV-1 
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